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Abstract. There is large approbation that successful 

training of deep networks requires many thousand 

annotated training samples. In this paper, to use the 

available annotated samples more efficiently I present 

a network and training strategy that relies on the 

strong use of data augmentation. The architecture 

consists of a contracting path to capture context and a 

symmetric expanding path that enables precise 

localization. We show that such a network can be 

trained end-to-end from very few images and 

outperforms the prior best method (a sliding-window 

convolutional network), using the same network 

trained on images having animals or other structures. 

The full implementation (based on TensorFlow) and 

the trained networks are available at: 

https://drive.google.com/open?id=1XSQILUQV1Xlz

w1cV0NdTEqncLnfJVOnA. 
 

I.Introduction 

 

In the last five years, deep convolutional networks 

have outperformed the state of the art in many visual 

recognition tasks, e.g. [4,2]. The success of 

Convolutional Neural Networks was limited due to the 

size of the available training sets and the size of the 

considered networks, although they have already 

existed for a long time [5]. The breakthrough by 

Krizhevsky et al. [4] was due to supervised training of 

a large network with 8 layers and millions of 

parameters on the ImageNet dataset with 1 million 

training images. Since then, even larger and deeper 

networks have been trained [8].  
 

 

 

 

 

 

 

 

 

The typical use of convolutional networks is on 

classification tasks, where the output to an image is 

a single class label. However, in many visual tasks, 

especially in face and structure image processing, 

the desired output should include localization, i.e., a 

class label is supposed to be assigned to each pixel. 

Moreover, thousands of training images are usually 

beyond reach in structgure tasks. Hence, Ciresan et 

al. [1] trained a network in a sliding-window setup 

to predict the class label of each pixel by providing a 

local region (patch) around that pixel as input. First, 

this network can localize. Secondly, the training data 

in terms of patches is much larger than the number 

of training images. 

Obviously, the strategy in Ciresan et al. [1] has two 

drawbacks. First, it is quite slow because the 

network must be run separately for each patch, and 

there is a lot of redundancy due to overlapping 

patches. Secondly, there is a trade-o between 

localization accuracy and the use of context. Larger 

patches require more max-pooling layers that reduce 

the localization accuracy, while small patches allow 

the network to see only little context. More recent 

approaches [7,3] proposed a classifier output that 

takes into account the features from multiple layers. 

Good localization and the use of context are possible 

at the same time. 

 

 

In this paper, a more elegant architecture is built 

upon, the so-called “fully convolutional network" 

[6]. We modify and extend this architecture such 

that it works with very few training images and 

yields more precise segmentations of faces and 

structures; see Figure 1. By supplementing a usual 

contracting network by successive layers, where 

pooling operators are replaced by up sampling 

operators, there is an increase in the resolution of the 

output.
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Fig. 1. U-net architecture (example for 64x64 pixels 

in the lowest resolution). Each blue box corresponds 

to a multi-channel feature map. The number of 

channels is denoted on top of the box. The x-y-size 

is provided at the lower left edge of the box. White 

boxes represent copied feature maps. The arrows 

denote the different operations. 
 

 

 

II.Network Architecture 
 

The network architecture is illustrated in Figure 1. It 

consists of a contracting path (left side) and an 

expansive path (right side). The contracting path 

follows the typical architecture of a convolutional 

network. It consists of the repeated application of 

two 3x3 convolutions (unpadded convolutions), each 

followed by a rectified linear unit (ReLU) and a 2x2 

max pooling operation with stride 2 for 

downsampling. At each downsampling step we 

double the number of feature channels. Every step in 

the expansive path consists of an upsampling of the 

feature map followed by a 2x2 convolution (“up-

convolution") that halves the number of feature 

channels, a concatenation with the correspondingly 

cropped feature map from the contracting path, and 

two 3x3 convolutions, each followed by a ReLU. 

The cropping is necessary due to the loss of border 

pixels in every convolution. At the final layer a 1x1 

convolution is used to map each 64-component 

feature vector to the desired number of classes. In 

total the network has 23 convolutional layers.  
To allow a seamless tiling of the output 
segmentation map, it is important to select the input 
tile size such that all 2x2 max-pooling operations are 
applied to a layer with an even x- and y-size. 

 

III.Dataset Preparation 
 

After downloading dataset, we have two folders. The 
first one is images which contains the raw images 
and annotation which contains the masks as 
a binary folder image. 
 By using image generator function, we prepare the 
dataset. 

 

def image_generator(files, batch_size = 32, sz = (25

6, 256)): 

   

  while True:  

     

    #extract a random batch  

    batch = np.random.choice(files, size = batch_size)

     

     

    #variables for collecting batches of inputs and out

puts  

    batch_x = [] 

    batch_y = [] 

     

     

    for f in batch: 

 

        #get the masks. Note that masks are png files  

        mask = Image.open(f'annotations/trimaps/{f[:-

4]}.png') 

        mask = np.array(mask.resize(sz)) 

 

        #preprocess the mask  

        mask[mask >= 2] = 0  

        mask[mask != 0 ] = 1 

         

        batch_y.append(mask) 
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        #preprocess the raw images  

        raw = Image.open(f'images/{f}') 

        raw = raw.resize(sz) 

        raw = np.array(raw) 

 

        #check the number of channels because some o

f the images are RGBA or GRAY 

        if len(raw.shape) == 2: 

          raw = np.stack((raw,)*3, axis=-1) 

 

        else: 

          raw = raw[:,:,0:3] 

 

        batch_x.append(raw) 

 

    #preprocess a batch of images and masks  

    batch_x = np.array(batch_x)/255. 

    batch_y = np.array(batch_y) 

    batch_y = np.expand_dims(batch_y,3) 

 

    yield (batch_x, batch_y)  

     batch_size = 32 

 

all_files = os.listdir('images') 

shuffle(all_files) 

 

split = int(0.95 * len(all_files)) 

 

#split into training and testing 

train_files = all_files[0:split] 

test_files  = all_files[split:] 

 

train_generator = image_generator(train_files, batch

_size = batch_size) 

test_generator  = image_generator(test_files, batch_s

ize = batch_size) 

x, y= next(train_generator) 

plt.axis('off') 

img = x[0] 

msk = y[0].squeeze() 

msk = np.stack((msk,)*3, axis=-1) 

 

plt.imshow( np.concatenate([img, msk, img*msk], a

xis = 1)) 

 

 

IV.IoU metric 

 

The intersection over union (IoU) metric is a simple 

metric used to evaluate the performance of a 

segmentation algorithm. Given two masks xtrue, 

xpred we evaluate 

IoU = ytrue∩ypred/ytrue∪ypred 

 

def mean_iou(y_true, y_pred): 

    yt0 = y_true[:,:,:,0] 

    yp0 = K.cast(y_pred[:,:,:,0] > 0.5, 'float32') 

    inter = tf.count_nonzero(tf.logical_and(tf.equal(yt

0, 1), tf.equal(yp0, 1))) 

    union = tf.count_nonzero(tf.add(yt0, yp0)) 

    iou = tf.where(tf.equal(union, 0), 1., tf.cast(inter/u

nion, 'float32')) 

    return iou 

 

V.Model  

 

def unet(sz = (256, 256, 3)): 

  x = Input(sz) 

  inputs = x 

   

  #down sampling  

  f = 8 

  layers = [] 

   

  for i in range(0, 6): 

    x = Conv2D(f, 3, activation='relu', padding='same'

) (x) 

    x = Conv2D(f, 3, activation='relu', padding='same'

) (x) 

    layers.append(x) 

    x = MaxPooling2D() (x) 

    f = f*2 

  ff2 = 64  

   

  #bottleneck  
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  j = len(layers) - 1 

  x = Conv2D(f, 3, activation='relu', padding='same')

 (x) 

  x = Conv2D(f, 3, activation='relu', padding='same')

 (x) 

  x = Conv2DTranspose(ff2, 2, strides=(2, 2), paddin

g='same') (x) 

  x = Concatenate(axis=3)([x, layers[j]]) 

  j = j -1  

   

  #upsampling  

  for i in range(0, 5): 

    ff2 = ff2//2 

    f = f // 2  

    x = Conv2D(f, 3, activation='relu', padding='same'

) (x) 

    x = Conv2D(f, 3, activation='relu', padding='same'

) (x) 

    x = Conv2DTranspose(ff2, 2, strides=(2, 2), paddi

ng='same') (x) 

    x = Concatenate(axis=3)([x, layers[j]]) 

    j = j -1  

     

   

  #classification  

  x = Conv2D(f, 3, activation='relu', padding='same')

 (x) 

  x = Conv2D(f, 3, activation='relu', padding='same')

 (x) 

  outputs = Conv2D(1, 1, activation='sigmoid') (x) 

   

  #model creation  

  model = Model(inputs=[inputs], outputs=[outputs]) 

  model.compile(optimizer = 'rmsprop', loss = 'binary

_crossentropy', metrics = [mean_iou]) 

   

  return model 

model = unet() 

model.summary() 

 

 

VI.Callbacks 

 

Simple functions to save the model at each epoch 

and show some predictions 

def build_callbacks(): 

        checkpointer = ModelCheckpoint(filepath='une

t.h5', verbose=0, save_best_only=True, save_weight

s_only=True) 

        callbacks = [checkpointer, PlotLearning()] 

        return callbacks 

 

# inheritance for training process plot  

class PlotLearning(keras.callbacks.Callback): 

 

    def on_train_begin(self, logs={}): 

        self.i = 0 

        self.x = [] 

        self.losses = [] 

        self.val_losses = [] 

        self.acc = [] 

        self.val_acc = [] 

        #self.fig = plt.figure() 

        self.logs = [] 

    def on_epoch_end(self, epoch, logs={}): 

        self.logs.append(logs) 

        self.x.append(self.i) 

        self.losses.append(logs.get('loss')) 

        self.val_losses.append(logs.get('val_loss')) 

        self.acc.append(logs.get('mean_iou')) 

        self.val_acc.append(logs.get('val_mean_iou')) 

        self.i += 1 

        print('i=',self.i,'loss=',logs.get('loss'),'val_loss=',

logs.get('val_loss'),'mean_iou=',logs.get('mean_iou'),

'val_mean_iou=',logs.get('val_mean_iou')) 

         

        #choose a random test image and preprocess 

        path = np.random.choice(test_files) 

        raw = Image.open(f'images/{path}') 

        raw = np.array(raw.resize((256, 256)))/255. 
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        raw = raw[:,:,0:3] 

        s 

        #predict the mask  

        pred = model.predict(np.expand_dims(raw, 0)) 

         

        #mask post-processing  

        msk  = pred.squeeze() 

        msk = np.stack((msk,)*3, axis=-1) 

        msk[msk >= 0.5] = 1  

        msk[msk < 0.5] = 0  

         

        #show the mask and the segmented image  

        combined = np.concatenate([raw, msk, raw* ms

k], axis = 1) 

        plt.axis('off') 

        plt.imshow(combined) 

        plt.show() 

 

VII.Training 

 

The input images and their corresponding 

segmentation maps are used to train the network 

with the stochastic gradient descent implementation 

of Case [9]. Due to the unpadded convolutions, the 

output image is smaller than the input by a constant 

border width. To minimize the overhead and make 

maximum use of the GPU memory, we favor large 

input tiles over a large batch size and hence reduce 

the batch to a single image. Accordingly we use a 

high momentum (0.99) such that a large number of 

the previously seen training samples determine the 

update in the current optimization step. 

 

train_steps = len(train_files) //batch_size 

test_steps = len(test_files) //batch_size 

model.fit_generator(train_generator,  

                    epochs = 30, steps_per_epoch = train_st

eps,validation_data = test_generator, validation_step

s = test_steps, 

                    callbacks = build_callbacks(), verbose =

 0) 

 

OUTPUT:  

i= 1 loss= 0.5812949411673088 val_loss= 

0.4535805203697898 mean_iou= 

0.01489582893853234 val_mean_iou= 

0.38134072856469586 

 

 

 

  i= 2 loss= 0.4611788935040774 val_loss= 

0.4059526297179135 mean_iou= 

0.44138037224542603 val_mean_iou= 

0.47776194594123145 

 

 

 

i= 3 loss= 0.43536490542159234 val_loss= 

0.420459739186547 mean_iou= 

0.4549277193470088 val_mean_iou= 

0.5115999552336606 
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i= 4 loss= 0.41323080182619837 val_loss= 

0.39397893168709497 mean_iou= 

0.48104962339139967 val_mean_iou= 

0.4626355333761735 

 

 

 

VIII. Prediction with new sample 

 

!wget http://r.ddmcdn.com/s_f/o_1/cx_462/cy_245/c

w_1349/ch_1349/w_720/APL/uploads/2015/06/catu

rday-shutterstock_149320799.jpg -O test.jpg 

 

raw = Image.open('test.jpg') 

raw = np.array(raw.resize((256, 256)))/255. 

raw = raw[:,:,0:3] 

 

#predict the mask  

pred = model.predict(np.expand_dims(raw, 0)) 

 

#mask post-processing  

msk  = pred.squeeze() 

msk = np.stack((msk,)*3, axis=-1) 

msk[msk >= 0.5] = 1  

msk[msk < 0.5] = 0  

 

#show the mask and the segmented image  

combined = np.concatenate([raw, msk, raw* msk], a

xis = 1) 

plt.axis('off') 

plt.imshow(combined) 

plt.show() 

 

The model predictions are efficient upto 93% 

 

 

Conclusion 
 

Image sementation using the u-net architecture 
achieves good performance on very different 
structure segmentation applications. It only needs 
very few annotated images and has a very 
reasonable training time on Google Colaboratory 
GPU. The u-net architecture can thus be applied 
easily to many more tasks. 
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