

 U-Net: Convolutional Networks for Face and Structure

Image Segmentation

 Anuja Garg

Acropolis Institute of Technology and Research, Indore, MP, India

Abstract. There is large approbation that successful

training of deep networks requires many thousand

annotated training samples. In this paper, to use the

available annotated samples more efficiently I present

a network and training strategy that relies on the

strong use of data augmentation. The architecture

consists of a contracting path to capture context and a

symmetric expanding path that enables precise

localization. We show that such a network can be

trained end-to-end from very few images and

outperforms the prior best method (a sliding-window

convolutional network), using the same network

trained on images having animals or other structures.

The full implementation (based on TensorFlow) and

the trained networks are available at:

https://drive.google.com/open?id=1XSQILUQV1Xlz

w1cV0NdTEqncLnfJVOnA.

I.Introduction

In the last five years, deep convolutional networks

have outperformed the state of the art in many visual

recognition tasks, e.g. [4,2]. The success of

Convolutional Neural Networks was limited due to the

size of the available training sets and the size of the

considered networks, although they have already

existed for a long time [5]. The breakthrough by

Krizhevsky et al. [4] was due to supervised training of

a large network with 8 layers and millions of

parameters on the ImageNet dataset with 1 million

training images. Since then, even larger and deeper

networks have been trained [8].

The typical use of convolutional networks is on

classification tasks, where the output to an image is

a single class label. However, in many visual tasks,

especially in face and structure image processing,

the desired output should include localization, i.e., a

class label is supposed to be assigned to each pixel.

Moreover, thousands of training images are usually

beyond reach in structgure tasks. Hence, Ciresan et

al. [1] trained a network in a sliding-window setup

to predict the class label of each pixel by providing a

local region (patch) around that pixel as input. First,

this network can localize. Secondly, the training data

in terms of patches is much larger than the number

of training images.

Obviously, the strategy in Ciresan et al. [1] has two

drawbacks. First, it is quite slow because the

network must be run separately for each patch, and

there is a lot of redundancy due to overlapping

patches. Secondly, there is a trade-o between

localization accuracy and the use of context. Larger

patches require more max-pooling layers that reduce

the localization accuracy, while small patches allow

the network to see only little context. More recent

approaches [7,3] proposed a classifier output that

takes into account the features from multiple layers.

Good localization and the use of context are possible

at the same time.

In this paper, a more elegant architecture is built

upon, the so-called “fully convolutional network"

[6]. We modify and extend this architecture such

that it works with very few training images and

yields more precise segmentations of faces and

structures; see Figure 1. By supplementing a usual

contracting network by successive layers, where

pooling operators are replaced by up sampling

operators, there is an increase in the resolution of the

output.

International Journal of Scientific & Engineering Research Volume 11, Issue 1, January-2020
ISSN 2229-5518

703

IJSER © 2020
http://www.ijser.org

IJSER

Fig. 1. U-net architecture (example for 64x64 pixels

in the lowest resolution). Each blue box corresponds

to a multi-channel feature map. The number of

channels is denoted on top of the box. The x-y-size

is provided at the lower left edge of the box. White

boxes represent copied feature maps. The arrows

denote the different operations.

II.Network Architecture

The network architecture is illustrated in Figure 1. It

consists of a contracting path (left side) and an

expansive path (right side). The contracting path

follows the typical architecture of a convolutional

network. It consists of the repeated application of

two 3x3 convolutions (unpadded convolutions), each

followed by a rectified linear unit (ReLU) and a 2x2

max pooling operation with stride 2 for

downsampling. At each downsampling step we

double the number of feature channels. Every step in

the expansive path consists of an upsampling of the

feature map followed by a 2x2 convolution (“up-

convolution") that halves the number of feature

channels, a concatenation with the correspondingly

cropped feature map from the contracting path, and

two 3x3 convolutions, each followed by a ReLU.

The cropping is necessary due to the loss of border

pixels in every convolution. At the final layer a 1x1

convolution is used to map each 64-component

feature vector to the desired number of classes. In

total the network has 23 convolutional layers.
To allow a seamless tiling of the output
segmentation map, it is important to select the input
tile size such that all 2x2 max-pooling operations are
applied to a layer with an even x- and y-size.

III.Dataset Preparation

After downloading dataset, we have two folders. The
first one is images which contains the raw images
and annotation which contains the masks as
a binary folder image.
 By using image generator function, we prepare the
dataset.

def image_generator(files, batch_size = 32, sz = (25

6, 256)):

 while True:

 #extract a random batch

 batch = np.random.choice(files, size = batch_size)

 #variables for collecting batches of inputs and out

puts

 batch_x = []

 batch_y = []

 for f in batch:

 #get the masks. Note that masks are png files

 mask = Image.open(f'annotations/trimaps/{f[:-

4]}.png')

 mask = np.array(mask.resize(sz))

 #preprocess the mask

 mask[mask >= 2] = 0

 mask[mask != 0] = 1

 batch_y.append(mask)

International Journal of Scientific & Engineering Research Volume 11, Issue 1, January-2020
ISSN 2229-5518

704

IJSER © 2020
http://www.ijser.org

IJSER

 #preprocess the raw images

 raw = Image.open(f'images/{f}')

 raw = raw.resize(sz)

 raw = np.array(raw)

 #check the number of channels because some o

f the images are RGBA or GRAY

 if len(raw.shape) == 2:

 raw = np.stack((raw,)*3, axis=-1)

 else:

 raw = raw[:,:,0:3]

 batch_x.append(raw)

 #preprocess a batch of images and masks

 batch_x = np.array(batch_x)/255.

 batch_y = np.array(batch_y)

 batch_y = np.expand_dims(batch_y,3)

 yield (batch_x, batch_y)

 batch_size = 32

all_files = os.listdir('images')

shuffle(all_files)

split = int(0.95 * len(all_files))

#split into training and testing

train_files = all_files[0:split]

test_files = all_files[split:]

train_generator = image_generator(train_files, batch

_size = batch_size)

test_generator = image_generator(test_files, batch_s

ize = batch_size)

x, y= next(train_generator)

plt.axis('off')

img = x[0]

msk = y[0].squeeze()

msk = np.stack((msk,)*3, axis=-1)

plt.imshow(np.concatenate([img, msk, img*msk], a

xis = 1))

IV.IoU metric

The intersection over union (IoU) metric is a simple

metric used to evaluate the performance of a

segmentation algorithm. Given two masks xtrue,

xpred we evaluate

IoU = ytrue∩ypred/ytrue∪ypred

def mean_iou(y_true, y_pred):

 yt0 = y_true[:,:,:,0]

 yp0 = K.cast(y_pred[:,:,:,0] > 0.5, 'float32')

 inter = tf.count_nonzero(tf.logical_and(tf.equal(yt

0, 1), tf.equal(yp0, 1)))

 union = tf.count_nonzero(tf.add(yt0, yp0))

 iou = tf.where(tf.equal(union, 0), 1., tf.cast(inter/u

nion, 'float32'))

 return iou

V.Model

def unet(sz = (256, 256, 3)):

 x = Input(sz)

 inputs = x

 #down sampling

 f = 8

 layers = []

 for i in range(0, 6):

 x = Conv2D(f, 3, activation='relu', padding='same'

) (x)

 x = Conv2D(f, 3, activation='relu', padding='same'

) (x)

 layers.append(x)

 x = MaxPooling2D() (x)

 f = f*2

 ff2 = 64

 #bottleneck

International Journal of Scientific & Engineering Research Volume 11, Issue 1, January-2020
ISSN 2229-5518

705

IJSER © 2020
http://www.ijser.org

IJSER

 j = len(layers) - 1

 x = Conv2D(f, 3, activation='relu', padding='same')

 (x)

 x = Conv2D(f, 3, activation='relu', padding='same')

 (x)

 x = Conv2DTranspose(ff2, 2, strides=(2, 2), paddin

g='same') (x)

 x = Concatenate(axis=3)([x, layers[j]])

 j = j -1

 #upsampling

 for i in range(0, 5):

 ff2 = ff2//2

 f = f // 2

 x = Conv2D(f, 3, activation='relu', padding='same'

) (x)

 x = Conv2D(f, 3, activation='relu', padding='same'

) (x)

 x = Conv2DTranspose(ff2, 2, strides=(2, 2), paddi

ng='same') (x)

 x = Concatenate(axis=3)([x, layers[j]])

 j = j -1

 #classification

 x = Conv2D(f, 3, activation='relu', padding='same')

 (x)

 x = Conv2D(f, 3, activation='relu', padding='same')

 (x)

 outputs = Conv2D(1, 1, activation='sigmoid') (x)

 #model creation

 model = Model(inputs=[inputs], outputs=[outputs])

 model.compile(optimizer = 'rmsprop', loss = 'binary

_crossentropy', metrics = [mean_iou])

 return model

model = unet()

model.summary()

VI.Callbacks

Simple functions to save the model at each epoch

and show some predictions

def build_callbacks():

 checkpointer = ModelCheckpoint(filepath='une

t.h5', verbose=0, save_best_only=True, save_weight

s_only=True)

 callbacks = [checkpointer, PlotLearning()]

 return callbacks

inheritance for training process plot

class PlotLearning(keras.callbacks.Callback):

 def on_train_begin(self, logs={}):

 self.i = 0

 self.x = []

 self.losses = []

 self.val_losses = []

 self.acc = []

 self.val_acc = []

 #self.fig = plt.figure()

 self.logs = []

 def on_epoch_end(self, epoch, logs={}):

 self.logs.append(logs)

 self.x.append(self.i)

 self.losses.append(logs.get('loss'))

 self.val_losses.append(logs.get('val_loss'))

 self.acc.append(logs.get('mean_iou'))

 self.val_acc.append(logs.get('val_mean_iou'))

 self.i += 1

 print('i=',self.i,'loss=',logs.get('loss'),'val_loss=',

logs.get('val_loss'),'mean_iou=',logs.get('mean_iou'),

'val_mean_iou=',logs.get('val_mean_iou'))

 #choose a random test image and preprocess

 path = np.random.choice(test_files)

 raw = Image.open(f'images/{path}')

 raw = np.array(raw.resize((256, 256)))/255.

International Journal of Scientific & Engineering Research Volume 11, Issue 1, January-2020
ISSN 2229-5518

706

IJSER © 2020
http://www.ijser.org

IJSER

 raw = raw[:,:,0:3]

 s

 #predict the mask

 pred = model.predict(np.expand_dims(raw, 0))

 #mask post-processing

 msk = pred.squeeze()

 msk = np.stack((msk,)*3, axis=-1)

 msk[msk >= 0.5] = 1

 msk[msk < 0.5] = 0

 #show the mask and the segmented image

 combined = np.concatenate([raw, msk, raw* ms

k], axis = 1)

 plt.axis('off')

 plt.imshow(combined)

 plt.show()

VII.Training

The input images and their corresponding

segmentation maps are used to train the network

with the stochastic gradient descent implementation

of Case [9]. Due to the unpadded convolutions, the

output image is smaller than the input by a constant

border width. To minimize the overhead and make

maximum use of the GPU memory, we favor large

input tiles over a large batch size and hence reduce

the batch to a single image. Accordingly we use a

high momentum (0.99) such that a large number of

the previously seen training samples determine the

update in the current optimization step.

train_steps = len(train_files) //batch_size

test_steps = len(test_files) //batch_size

model.fit_generator(train_generator,

 epochs = 30, steps_per_epoch = train_st

eps,validation_data = test_generator, validation_step

s = test_steps,

 callbacks = build_callbacks(), verbose =

 0)

OUTPUT:

i= 1 loss= 0.5812949411673088 val_loss=

0.4535805203697898 mean_iou=

0.01489582893853234 val_mean_iou=

0.38134072856469586

 i= 2 loss= 0.4611788935040774 val_loss=

0.4059526297179135 mean_iou=

0.44138037224542603 val_mean_iou=

0.47776194594123145

i= 3 loss= 0.43536490542159234 val_loss=

0.420459739186547 mean_iou=

0.4549277193470088 val_mean_iou=

0.5115999552336606

International Journal of Scientific & Engineering Research Volume 11, Issue 1, January-2020
ISSN 2229-5518

707

IJSER © 2020
http://www.ijser.org

IJSER

i= 4 loss= 0.41323080182619837 val_loss=

0.39397893168709497 mean_iou=

0.48104962339139967 val_mean_iou=

0.4626355333761735

VIII. Prediction with new sample

!wget http://r.ddmcdn.com/s_f/o_1/cx_462/cy_245/c

w_1349/ch_1349/w_720/APL/uploads/2015/06/catu

rday-shutterstock_149320799.jpg -O test.jpg

raw = Image.open('test.jpg')

raw = np.array(raw.resize((256, 256)))/255.

raw = raw[:,:,0:3]

#predict the mask

pred = model.predict(np.expand_dims(raw, 0))

#mask post-processing

msk = pred.squeeze()

msk = np.stack((msk,)*3, axis=-1)

msk[msk >= 0.5] = 1

msk[msk < 0.5] = 0

#show the mask and the segmented image

combined = np.concatenate([raw, msk, raw* msk], a

xis = 1)

plt.axis('off')

plt.imshow(combined)

plt.show()

The model predictions are efficient upto 93%

Conclusion

Image sementation using the u-net architecture
achieves good performance on very different
structure segmentation applications. It only needs
very few annotated images and has a very
reasonable training time on Google Colaboratory
GPU. The u-net architecture can thus be applied
easily to many more tasks.

References

1. Ciresan, D.C., Gambardella,

L.M., Giusti, A., Schmidhuber, J.: Deep neural net-
works segment neuronal membranes in electron
microscopy images. In: NIPS. pp. 2852{2860 (2012)
2. Girshick, R., Donahue, J.,

Darrell, T., Malik, J.: Rich feature hierarchies for ac-
curate object detection and semantic segmentation.
In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR)
(2014)
3. Hariharan, B., Arbelez, P.,
Girshick, R., Malik, J.: Hypercolumns for object
seg-mentation and ne-grained localization (2014),
arXiv:1411.5752 [cs.CV]
4. Krizhevsky, A., Sutskever, I.,

Hinton, G.E.: Imagenet classi cation with deep con-
volutional neural networks. In: NIPS. pp. 1106{1114

(2012)
5. LeCun, Y., Boser, B., Denker,

J.S., Henderson, D., Howard, R.E., Hubbard, W.,

Jackel, L.D.: Backpropagation applied to

handwritten zip code recognition. Neural

Computation 1(4), 541{551 (1989)
6. Long, J., Shelhamer, E.,
Darrell, T.: Fully convolutional networks for
semantic segmentation (2014), arXiv:1411.4038
7. Seyedhosseini, M., Sajjadi, M.,

Tasdizen, T.: Image segmentation with cascaded
hierarchical models and logistic disjunctive normal
networks. In: Computer Vision (ICCV), 2013 IEEE
International Conference on. pp. 2168{2175 (2013)
8. Simonyan, K., Zisserman, A.:
Very deep convolutional networks for large-scale
image recognition (2014), arXiv:1409.1556 [cs.CV]
9. Jia, Y., Shelhamer, E.,
Donahue, J., Karayev, S., Long, J., Girshick, R.,
Guadarrama, S., Darrell, T.: Caffe: Convolutional
architecture for fast feature embedding (2014),
arXiv:1408.5093 [cs.CV]
10. U-Net: Convolutional Networks
for Biomedical Image Segmentation 18 May 2015
Olaf Ronneberger, Philipp Fischer,Thomas Brox

International Journal of Scientific & Engineering Research Volume 11, Issue 1, January-2020
ISSN 2229-5518

708

IJSER © 2020
http://www.ijser.org

IJSER

http://r.ddmcdn.com/s_f/o_1/cx_462/cy_245/cw_1349/ch_1349/w_720/APL/uploads/2015/06/caturday-shutterstock_149320799.jpg -O test.jpg
http://r.ddmcdn.com/s_f/o_1/cx_462/cy_245/cw_1349/ch_1349/w_720/APL/uploads/2015/06/caturday-shutterstock_149320799.jpg -O test.jpg
http://r.ddmcdn.com/s_f/o_1/cx_462/cy_245/cw_1349/ch_1349/w_720/APL/uploads/2015/06/caturday-shutterstock_149320799.jpg -O test.jpg

